Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.contributor.advisorYu, Michael Wing-yiu (ABCT)-
dc.contributor.advisorChan, Albert Sun-chi (ABCT)-
dc.creatorNg, Ka Ho-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/7865-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleTransition metal catalyzed carbon-hydrogen bond functionalizations for aromatic carbon-nitrogen bond formation : development of palladium-catalyzed intermolecular amidation of anilides and benzoic acids and rhodium-catalyzed direct aryl C-H amination using N-chloroaminesen_US
dcterms.abstractSite-selective aromatic C-N bond formation is an attractive approach of fundamental importance in organic synthesis, since arylamines are common motifs in pharmaceutical products and advanced functional materials. Currently, palladium-catalyzed cross coupling of aryl halides with amines (Buchwald-Hartwig amination) remains a widely employed method for arylamines synthesis. However, the reliance of prefunctionalized arenes and the need for strongly basic medium constitute the major drawback of this method. It is envisioned that direct amination of aryl C-H bonds should improve atom-economy and synthetic efficiency for arylamine synthesis. Transition metal-mediated nitrenoid insertion to aliphatic C-H bonds has been extensively investigated over the past decades. Reactive metal-nitrene/imido complexes are known to react with sp³ C-H bonds with a reactivity order of tertiary C-H > secondary C-H >> primary C-H bonds. This reactivity order is reminiscent of the hydrogen atom abstraction mechanism for the C-H bond cleavage. Due to the higher bond dissociation energy of aromatic C-H bonds, nitrenoid insertion to arene C-H bonds is largely unsuccessful. In this work, palladium(II)-catalyzed aromatic amidation of pivalanilides with ethyl N-nosyloxycarbamate (1.2 equiv) and [Pd(OTs)₂(MeCN)₂] (OTs = p-toluenesulfonate) (10 mol%) in 1,4-dioxane at 80 °C to afford ortho-amidated pivalanilides in up to 87% yields. Excellent functional group tolerance was achieved, for instance, substrates bearing halogens and -OMe as substituents were smoothly transformed to the desired amides under mild conditions. Notably, benzyl and vinyl moiety, which are known to react with nitrenes, were well tolerated. This Pd-catalyzed approach has been extended successfully to the direct ortho-C-H amidation of benzoic acids to give anthranilic acids. Reaction of lithium benzoates with Pd(OAc)₂ (10 mol%) and ethyl N-(2,4,6-trimethylbenzenesulfonyloxy)carbamates gave anthranilic acids in up to 73% yields. Strong dependence on the counter ion of the benzoates was observed; when Li+ is the counter ion (versus Na⁺, K ⁺ and NnBu₄⁺), the reaction gave the best results.en_US
dcterms.abstractA kinetic study on the [Pd(OTs)₂(MeCN)₂]-catalyzed amidation of 2,4-dimethylpivalanilide (1a) with ethyl N-nosyloxycarbamate (2aNs) was performed; an experimental rate law: rate = k[1a][2aNs][Pd]² was observed. Also, a significant primary kinetic isotope effect (kH/kD = 2.8) was observed, implying that the turnover-limiting step involves substantial C-H bond cleavage. The palladacyclic complex [Pd(C~O)(μ-OTs)]₂ (C~O = 2,4-dimethylpivalanilide) (1aPd) was prepared and structurally characterized, and a stoichiometric reaction of 1aPd with 2aNs (1.2 equiv) in 1,4-dioxane afforded amide 3aa in 45% yield. A plot of log krel versus the Hammett substituent σpara constants for the amidation of pivalanilides revealed a linear free energy relationship with a ρ value of -0.53. The small negative ρ value implies that the Pd(II)-mediated C-H bond cleavage should not proceed through an cationic arene intermediate (arenium intermediate). Apart from C-H amidation reactions, we also achieved the aromatic C-H amination with N-chloroamines under Rh(III) catalysis. With [Cp*RhCl₂]₂ (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl) (2.5 mol%) as catalyst, treating acetophenone O-methyloximes with secondary N-chloroamines, AgSbF6 (1.5 equiv) and CsOAc (0.3 equiv) in THF at 40 °C afforded the N-arylamines in up to 85% yield. Both electron-donating and electron-withdrawing substituents were well tolerated. A one-pot C-H amination protocol was also developed; this involves in situ generation of the N-chloroamines by reacting N-H amines with N-chlorosuccinimide. The Rh-catalyzed C-N bond coupling reaction was also extended to primary N-chloroamines (ClNHR) as coupling partners. In the literature, primary N-chloroamines are poor substrates for electrophilic amination. In this work, when acetophenone O-methyloximes reacted with primary N-chloroamines in the presence of [Cp*RhCl₂]₂ (5 mol%), AgSbF6 (1.5 equiv) and CsOAc (1.3 equiv) in THF at 40 °C, the C-N coupled products were obtained in up to 92% yield. Regarding the reaction mechanism, an apparent primary kinetic isotope effect (kH/kD = 2.1) indicates C-H rhodation being turnover-limiting in the catalysis. Furthermore, the cyclorhodated complex [Cp*Rh(C~N)Cl] (C~N = 2-phenylpyridine) (11aRh) was prepared and spectroscopically characterized. The stoichiometric reaction of 11aRh with N-chloroamines afforded the amination products in 52 93% yields.en_US
dcterms.extentxxxv, 430 pages : illustrations ; 30 cmen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2014en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.educationalLevelPh.D.en_US
dcterms.LCSHTransition metal catalysts.en_US
dcterms.LCSHPalladium catalysts.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b27805360.pdfFor All Users26.13 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/7865