Full metadata record
DC FieldValueLanguage
dc.contributorInstitute of Textiles and Clothingen_US
dc.contributor.advisorAu, Joe Sau Chuen (ITC)-
dc.contributor.advisorFan, Jintu (ITC)-
dc.contributor.advisorZheng, Rong (ITC)-
dc.creatorSun, Chao-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/7963-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleErgonomic design of active badminton sportswearen_US
dcterms.abstractActive racket sportswear with novel ergonomic designs that can improve thermal and motion comfort during exercises are much desired. They should meet the requirements of low moisture accumulation, good convective heat transfer as well as low motion pressure, etc. The objective of my PhD project is to develop a new active badminton sportswear through a combination of various design elements like spacer structure, ventilation pattern and slash design to enhance the physical and physiological comfort during heavy exercises. A ventilation structure, which combines spacers and mesh openings, was designed to improve the convective heat transfer and reduce the touch areas between the skin and fabrics. A sports T-shirt with the above mentioned ventilation parts was fabricated by using a circular knitting machine. The pattern and fabrication process were investigated and optimized. The effect of ventilation design was evaluated by the Kawabata Evaluation System, the perspiring fabric manikin-Walter and wearer trials. Results demonstrated that the ventilation design can significantly increase both air circulation next to skin and ventilation cooling effect under windy condition and/or active body movement. The T-shirt with ventilation design provides significant advantages in wearers' thermal comfort, as manifested in reduced heat accumulation, lower skin temperature and humidity, better subjective sensation as well as reduced energy consumption during exercises. Thin Non-elastic Smooth String (TNSS) method was developed to measure the tensile force of sportswear. The tensile force and pressure of sportswear were investigated during main badminton actions. According to the tensile and pressure test, slashes design was developed for ease of body motion during badminton exercise. The slashes were fabricated by laser cutting to reduce the local tension and the resultant pressure when the cuts are opened and closed during body movement. The effect of slashes was examined and showed a significant influence on reducing tensile force. A new badminton sportswear was designed and developed based on the research, which combines ventilation structures and slashes in different parts of the garment. The design specifications and production process are introduced in details. The effects of the new sportswear on reducing the motion resistance and improving the ventilation were measured and evaluated. Comfort satisfaction, thermal and moisture sensation, clingy sensation, pressure sensation as well as tensile force sensation were assessed in three phases of badminton exercise by players. Compared to commercial badminton sportswear, the new sportswear achieved higher degree of wearer satisfaction, cooler/dryer sensation and lower sports constriction.en_US
dcterms.extentxx, 249 pages : illustrations (some color) ; 30 cmen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2015en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.educationalLevelPh.D.en_US
dcterms.LCSHSport clothes -- Design.en_US
dcterms.LCSHBadminton players -- Clothing.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b28068890.pdfFor All Users6.55 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/7963