Author: Shao, Puguang
Title: Improved Newton-Raphson method for power flow solution
Advisors: Xu, Zhao (EE)
Degree: M.Sc.
Year: 2015
Subject: Electric power transmission.
Electric power systems.
Hong Kong Polytechnic University -- Dissertations
Department: Department of Electrical Engineering
Pages: viii, 70 pages : illustrations
Language: English
Abstract: Newton-Raphson method can solve power flow problem with high efficiency Which has been extensively utilized in power system planning, operation and accident investigation for several decades. It is powerful high efficiency and performance compare to other traditional methods. However, it may not keep up with the development of power system. Such shortcomings of NR method are bubbling to the surface. In modern times, the power system network expands more complicated because such alternative resources type generator (like wind energy, solar energy, etc.) with large scale battery connects to the power grid which causes the power system more fluctuating. In that situation, the traditional NR method may not solve those cases, due to low converge rate and long computation time. Nevertheless, this problem could be solved by the second order NR method which base on the first three terms of Tylor expansion. It will have higher convergent rate and lesser iterations. Computation speed is increased. In this thesis, the power network model is described. Three commonly used methods are discussed. Which are the Gauss-Seidel method, the Newton-Raphson method and the fast-decoupled method. Then an improved method is described. The improved NR method and tradition NR method has been tested on the IEEE 14, 30, 57, 118 case system for comparison. Which shows that the improved method has higher convergent rate and computation speed than the traditional one.
Rights: All rights reserved
Access: restricted access

Files in This Item:
File Description SizeFormat 
b28254107.pdfFor All Users (off-campus access for PolyU Staff & Students only)1.01 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show full item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/8193