Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributor.advisorZhang, Peng (ME)-
dc.creatorShang, Longji-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/8590-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleNumerical simulation of bio-diesel engine combustion and emissionen_US
dcterms.abstractEnergy security and environment protection have been the serious problems to the contemporary world. It has been an increasing interest in researching the energy operation process especially for the combustion process of internal combustion (IC) engines, which consume a large portion of fuels and produce the proportionally large amount of pollutions. The method of numerical simulation can effectively predict the complete performance of an IC-engine and partly replace some engine experiments. Various parametric studies can be done by using numerical simulation method without the time and space limitation can guide the designs of engines with new combustion system and optimize the performance of the engines. It can also forecast the power and emissions of the engine with various fuels. Therefore the method of numerical simulation is very powerful and has many advantages in IC-engine study. KIVA-3V, a multidimensional CFD package originally developed by U.S Los Alamos National Laboratory, is used as the simulation tool in this study. Based on KIVA-3V, the operation process of an opposed-piston two-stroke diesel engine with inflow ports and outflow ports is simulated. The effect of different inflow tangential angles on the in-cylinder air motion is discussed in this study. The detailed combustion results calculated by KIVA-3V are compared with the experimental data. The comparison of combustion and emission characteristics between engines with tangential angles equal to 0° and 20° is also shown in this study. An alternative fuel, bio-diesel, has been added to the fuel library of KIVA-3V. The physical properties of methyl oleate (C₁₉H₃₆O₂) are used to approximate those of bio-diesel. By comparing the numerical simulation of bio-diesel and conventional diesel, it is found that bio-diesel has a better performance on emission at the expense of lower in-cylinder temperature and pressure.en_US
dcterms.extentxiii, 84 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2016en_US
dcterms.educationalLevelAll Masteren_US
dcterms.educationalLevelM.Sc.en_US
dcterms.LCSHBiomass energy.en_US
dcterms.LCSHInternal combustion engines -- Combustion -- Mathematical models.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsrestricted accessen_US

Files in This Item:
File Description SizeFormat 
b29109255.pdfFor All Users (off-campus access for PolyU Staff & Students only)3.13 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/8590