Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.contributor.advisorTo, Sandy (ISE)-
dc.creatorZhang, Quanli-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/8680-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleSurface generation and damage mechanism in ultra-precision grinding of brittle materialsen_US
dcterms.abstractTo ensure the surface finish and form accuracy simultaneously, ultra-precision grinding has been widely employed in the machining of hard and brittle materials, such as engineering composites, carbides, optical glasses, and cermet materials. However, there are still great challenges in achieving an optical mirror surface with good surface integrity. Indeed, the combined effects of material properties, processing parameters and wheel wear on the surface generation and damage mechanism still need further investigation in ultra-precision diamond grinding of brittle materials. Besides, as a potential candidate for machining functional surface, ultra-precision grinding with a sharp edge wheel has been developed, but its wide application still need more efforts and exploration. In this thesis, the theoretical and experimental study on the surface damage mechanism and surface generation of typical engineering ceramics (WC/Co and RB-SiC/Si) under ultra-precision grinding with a sharp edge wheel is divided into four parts. In the first part, Vickers-indentation and single point diamond scratch tests are firstly utilized to investigate the damage mechanism induced by the interaction between the abrasive grit and workpiece materials. Moreover, to analyze the surface damage mechanism in high spindle speed grinding (HSSG), a novel plunge grinding experiment is conducted at the creep feed condition, and the typical surface characteristics between WC/Co and RB-SiC/Si are analyzed and compared. The second part is dedicated to investigate the grinding induced surface damage mechanism and the surface generation in relation to the machining parameters, spindle vibration and material removal rate. New grinding induced damage mechanisms, such as amorphization of SiC, preferred phase growth and the impact of C segregation, are identified. In addition, the non-uniform surface finish of a specific workpiece is explored experimentally and theoretically.en_US
dcterms.abstractThe effects of materials microstructure on the surface damage mechanism and surface generation is then studied in the third part, focusing on the effect of binder addition. Even though Co and Si can improve the density and toughness of bulk materials, the different mechanical properties between the composition phases and the existence of phase boundaries both contributed to the non-uniform material removal rate and resulted in the formation of reliefs, edge chipping and grain dislodgement. Moreover, the phase transformation induced volume change of Si and the extrusion of Co under the dynamic pressure of the diamond grits lead to the generation of projections on the machined surface. No obvious oxidation of Co and Si occurred for WC/Co and RB-SiC/Si under high spindle speed grinding (HSSG) with minimum quantity lubrication (MQL). In the fourth part, the wear mechanism of the diamond wheel is studied, and its impact on the surface generation is analyzed. The wheel wear mechanism involves rapid loss of the sharp edge, grit splintering, flattening, and oxidation. Two appropriate dressing methods are proposed to obtain a sharp edge on the diamond wheel. With the well prepared wheels, two types of functional surfaces are machined by ultra-precision grinding. The results showed that with the proposed grinding protocol, the form accuracy and surface finish could reach 0.28 μm (PV), 9 nm (Ra) for the Φ15 mm TiC based hemisphere couples and 0.64 μm (PV), 6 nm (Ra) for the Φ20 mm 'Water-drop' surface on binderless tungsten carbide. The originality and significance of the present research is shown in the following three aspects: (i) new grinding induced surface damage mechanism is identified, including the impact of C segregation, preferred phase growth, etc., so the present research contributes to the understanding of the machining induced surface damage mechanism; (ii) the effects of materials microstructure and wheel wear on the surface characteristics of typical engineering carbides in ultra-precision grinding with a sharp edge wheel are analyzed, and comprehensive knowledge of the surface generation in ultra-precision grinding of brittle materials is achieved; (iii) this study provides clear comprehension on the technique to machine functional surfaces by wheel normal grinding, and it promotes the development of the grinding technology of hard and brittle materials.en_US
dcterms.extentxxiii, 210 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2016en_US
dcterms.educationalLevelPh.D.en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.LCSHGrinding and polishingen_US
dcterms.LCSHSurfaces (Technology)en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b29255296.pdfFor All Users11.98 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/8680