Full metadata record
DC FieldValueLanguage
dc.contributorInstitute of Textiles and Clothingen_US
dc.contributor.advisorHu, Jinlian (ITC)-
dc.creatorChen, Cheng-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/8817-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleStudy of smart conduits made of shape-memory polymers for peripheral nerve regenerationen_US
dcterms.abstractShape-memory polymers (SMPs) are defined by their capacity to recover an initial shape from temporary deformations upon external stimulation. They have gained increasing attention over the recent decade in biomedical applications. Reported medical devices based on SMPs range from general surgical to intravascular applications and filling materials to drug delivery systems. However, there have been few reports on applications of SMPs to nerve regeneration. Yet, peripheral nerve repair and regeneration have been a unique clinical challenge for surgeons. Herein, we propose a novel kind of smart nerve conduit fabricated from SMPs that can achieve peripheral nerve regeneration by automatic lengthening. The design concept, preparation process, structure characterization, function evaluation, mechanism analysis for the SMPs and SNCs were presented in this thesis. Briefly, a series of macromers with different (rac-lactide) to glycolide weight ratios were synthesized and the characteristics of the synthesized networks were studied. Cyclic thermo-mechanical measurements indicated the robustness of molecular structure for shape memory function. Body-water responsive shape-memory behavior was evaluated by angle recovery measurements. The shape recovery time of the polymer could be adjusted by the selection of comonomer ratio and then the overall gradual-recovery function of a device could be realized by suitable combination of different copolymers. Thus a tri-segment smart nerve conduit was fabricated from this polymer system by electrospinning, shown to gradually recover in an in vitro experiment under stimulated physiological conditions, that is, body-liuid environmemnt (36°C water). In vitro culture and qualitative immunocytochemistry of Schwann cells assessed the biocompatibility of poly(rac-lactide-co-glycolide) networks. In vivo experiments in rabbit animal model were conducted to ensure the SNC has the required mechanical characteristics to perform adequately under practical conditions.en_US
dcterms.extentxix, 128 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2016en_US
dcterms.educationalLevelAll Masteren_US
dcterms.educationalLevelM.Phil.en_US
dcterms.LCSHShape memory polymers.en_US
dcterms.LCSHNervous system -- Regeneration.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b29350542.pdfFor All Users3.54 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/8817