Author: Chan, Tak-chung
Title: Metal-mediated allylation reaction in aqueous media
Degree: M.Phil.
Year: 2003
Subject: Hong Kong Polytechnic University -- Dissertations
Organic solvents
Metallic oxides
Carbonyl compounds
Organometallic chemistry
Department: Department of Applied Biology and Chemical Technology
Pages: xiii, 130 leaves : ill. ; 30 cm
Language: English
Abstract: Organic reactions in aqueous media have become more important. Many organic chemists have focused on using water as solvent because of its low cost and environmentally benign behavior. One of the most important reactions in organic synthesis is the Barbier-Grignard type reaction. Till now, several metals have already been exploited for their ability to mediate the allylation of carbonyl compounds. Some examples are Zn, Sn, In, etc. This project explored the Barbier-type allylation reaction using 5 different transition metals. They were iron (Fe), nickel (Ni), cobalt (Co), molybdenum (Mo) and tungsten (W), with various reported promoting agents. Iron was found to be able to mediate the allylation reaction of carbonyl compounds in aqueous media. With the activation of fluoride salts, iron metal can effectively perform the reaction. Different fluoride salts had various activating ability to iron. Sodium fluoride (NaF) was the most effective promoter. The allylation of different carbonyl compounds with several allylic halides was surveyed. Although the reaction time of the iron-mediated allylation was comparatively longer than the other metals, the advantages of the present reaction are the low cost and toxicity of iron over the other metals. Mechanistic study was also carried out. The possible intermediates and the role of fluoride ions in the iron-mediated allylation reaction were studied. In the literature, it was reported that the intermediate of the tin-mediated allylation was diallyl-tin-dibromide. It was proposed that the iron-mediated allylation reaction followed a similar route. However, iron was paramagnetic and the intermediate could not be observed in 1H-NMR spectroscopy. Thus, complex (n3-C3H5)Fe(CO)3Br was synthesized to mimic the intermediate of the iron-mediated allylation. The results showed that (n3-C3H5)Fe(CO)3Br might not be suitable to explain fully the mechanism of the iron-mediated allylation reaction.
Rights: All rights reserved
Access: open access

Files in This Item:
File Description SizeFormat 
b17330440.pdfFor All Users3.42 MBAdobe PDFView/Open

Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show full item record

Please use this identifier to cite or link to this item: