Author: Kitavi, Dominic Makaa
Title: Analytical derivation of lower bounds of the estimation error of statistically unbiased estimation of electromagnetic/acoustic wireless signal parameters
Advisors: Wong, Kainam Thomas (EIE)
Degree: Ph.D.
Year: 2017
Subject: Hong Kong Polytechnic University -- Dissertations
Array processors
Signal processing -- Digital techniques
Multisensor data fusion
Department: Department of Electronic and Information Engineering
Pages: 160 pages : color illustrations
Language: English
Abstract: This dissertation presents four related investigations: 1. Direction finding using an array of isotropic sensors with gains of Bayesian uncertainty -the hybrid Cram´er-Rao bound and maximum a posteriori estimation. This investigation, discussed in Chapter 3, analyzes how a sensor array's direction-finding accuracy may be degraded by any stochastic uncertainty in the sensors' gains. The analysis is through derivation of hybrid Cram´er-Rao bound of azimuth-elevation direction-of-arrival estimates. This work is first in the open literature to derive the hybrid Cram´er-Rao bound of azimuth-elevation direction-of-arrival estimates of a signal incident upon an array of isotropic sensors that suffer gain uncertainties. This hybrid Cram´er-Rao bound is analytically shown to be inversely proportional to a multiplicative factor equal to one plus the variance of the sensors' gain uncertainty. This finding applies to any array-grid geometry. Monte Carlo simulations demonstrate that the performance of maximum a posteriori estimator approaches the lower bound derived. This work has been published in IEEE Transactions of Aerospace and Electronic Systems (authors -the candidate, his chief supervisor and two other collaborators). 2. Hybrid Cram´er-Rao bound for direction-of-arrival estimation, at a triad of higher-order cardioid sensors in perpendicular orientation and spatial colocation. This investigation, discussed in Chapter 4, pioneers the idea of placing three cardioid microphones/hydrophones, of any cardioidic order, in orthogonal orientation but spatial colocation. The triad's azimuth-elevation direction-of-arrival estimation accuracy is studied. This accuracy is measured via hybrid Cram´er-Rao bound. The cardiodicity index is allowed to be stochastically uncertain. Given in closed form, and comprehensively analyzed, is the hybrid Cram´er-Rao bound corresponding to a first-order cardioid. Monte Carlo simulations show that the performance of maximum a posteriori estimator approaches the lower bound derived. This work is under review by the Journal of Sound and Vibration (authors -the candidate, his chief supervisor and two other collaborators).
3. Hybrid Cram´er-Rao bound for estimation of direction-of-arrival and polarization, using an electromagnetic dipole/loop antenna triad with Bayesian mutual coupling. This investigation, discussed in Chapter 5, introduces the concept of mutual coupling across a triad of electromagnetic dipole/loop antennas, in direction-of-arrival and polarization parameters' estimation. A variety of signal processing algorithms have previously been designed to study polarization and direction-of-arrival of electromagnetic waves, using dipole/loop antennas. However, none of the previous investigations has taken into account the fact that each of the constituent dipole/loop antenna may experience electromagnetic coupling among the other antennas. There is thus a need to investigate this practical factor of mutual coupling among the dipole/loop antennas. This investigation/analysis is studied here through derivation of the hybrid Cram´er-Rao bound for the azimuth-elevation direction-of-arrival and the polarization parameters, using an electromagnetic dipole/loop antenna triad with mutual impedance among the antennas. The mutual impedance is considered to be stochastically uncertain, with a priori known mean and variance. 4. Cram´er-Rao bound for direction-of-arrival estimation at a tri-axial velocity sensor with inter-channel incoherence. This investigation, discussed in Chapter 6, considers statistical incoherence of data across the three channels of a tri-axial velocity sensor. All previous direction-of-arrival estimation algorithms for a tri-axial velocity sensor presume the tri-axial velocity sensor's data to be statistically coherent across the three channels. However, the channels can become de-correlated. This investigation comes in to fill such missing gap. The analysis on how the incoherence of the received data (or rather de-correlation of the channels) affects the direction-of-arrival estimation accuracy, is done through derivation of Cram´er-Rao bound for the azimuth-elevation direction-of-arrival. Monte Carlo simulations show that the performance of maximum likelihood estimator approaches the derived lower bounds.
Rights: All rights reserved
Access: open access

Files in This Item:
File Description SizeFormat 
991021965753903411.pdfFor All Users8.87 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show full item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/9149