Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.contributor.advisorLi, Xiangdong (CEE)-
dc.creatorZhao, Yanping-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/9517-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleThe role of EDDS on soil-plant-copper interactions during chelant-assisted phytoextractionen_US
dcterms.abstractSoil pollution with heavy metals is a serious environmental issue around the world. To remediate heavy metals in contaminated soils, chelant-assisted phytoextraction has been paid much attention and investigated widely. However, a thorough understanding is still of lack on the complex interactions among chelants, target metals, soils, and plants. Therefore, the current study aims to investigate the role of the biodegradable chelant on the extraction and transport of a representative metal - Cu in soil and plant processes. Firstly, the performance of [S,S]-ethylenediaminedisuccinic acid (EDDS) and tetrasodium of N,N-bis(carboxymethyl) glutamic acid (GLDA) on Cu phytoextraction was compared with ryegrass and tall fescue. Results showed that, compared to GLDA, EDDS induced a higher Cu concentration in plants, showed less phytotoxicity, and degraded faster in soils. Therefore, EDDS was selected as a representative biodegradable chelant for the following study. Secondly, the impact of EDDS on soil processes in phytoextraction was investigated mainly from two aspects. The first aspect concentrated on the chemical interactions of EDDS with soils in rhizosphere of ryegrass. After application into a multi-interlayer rhizobox for 7 d, EDDS transported from non-rhizosphere to rhizosphere of ryegrass. Using synchrotron-based techniques, such as X-ray micro-fluorescence (µ-XRF) and X-ray absorption near edge structure (XANES), EDDS primarily extracted Cu from the adsorbed fraction on goethite instead of clay minerals in tested soils, which was probably associated with the EDDS-promoted dissolution of iron oxides. Transportation of Cu from non-rhizosphere to rhizosphere was also facilitated in the form of CuEDDS identified by solution speciation modelling. The second aspect focused on the impacts of EDDS to soil nutrients and microbes in the rhizosphere of ryegrass. Results showed that EDDS was beneficial to rhizosphere soil microbes, with the increase of microbial biomass C, microbial biomass N, and urease activities. The benefits of EDDS can be associated with the high concentration of soil nutrients in rhizosphere soils after the application of EDDS. Finally, the influencing mechanism of EDDS on Cu uptake and transport in ryegrass was studied. EDDS increased the Cu translocation from root to shoot of ryegrass. Cu distribution in roots by µ-XRF of showed that EDDS alleviated the deposition of Cu in meristem of root tip, and in the lateral and primary root conjunction of lateral root zone. Cu speciation by XANES revealed that EDDS formed stable CuEDDS complex, reduced the root sequestration of Cu, and thus improving the transport of Cu within plants. A conceptual model was developed to describe the mechanism of Cu uptake and transport either in the presence or absence of EDDS. Collectively, this study revealed that EDDS was effective to extract Cu from soils, facilitate Cu transportation to root surface, and improve Cu internal mobility within plants. It unravels the major mechanisms involved in chelant-assisted phytoextraction, which will promote the development and application of this technology in future.en_US
dcterms.extentxv, 188 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2018en_US
dcterms.educationalLevelPh.D.en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.LCSHSoils -- Heavy metal contenten_US
dcterms.LCSHSoil pollutionen_US
dcterms.LCSHBioremediationen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
991022142059103411.pdfFor All Users4.61 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/9517