Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.contributor.advisorCao, Jiannong (COMP)-
dc.creatorXu, Linchuan-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/9702-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleHeterogeneous information fusion in network embedding for data mining applicationsen_US
dcterms.abstractWe live in a world full of networks, instinctively and inevitably. Human beings by nature are social animals. In modern life, we can extend our social relationships to others in any place of the world with the help of world wide web, which can essentially connect all entities attached it. Besides, human body is comprised of biological molecules, and biological molecules interact to realize biological functionalities. Analyzing the networks has profound meanings, e.g., studying the categories of entities can better understand the networks, studying the groups of entities can partition the large networks into smaller sub-networks, and studying the relationships among entities can obtain insights into how the networks evolve. We can see that these network applications either can benefit from utilizing the relationship information, e.g., the category of a particular entity is likely to depend on whom it usually interacts with, or directly target at relationships, e.g., the network evolvement. In big data era, we are fortunate to have access to much of the network information including both entities and relationships. All these information provides huge opportunities for machine learning and data mining models whose success largely depends on the data fed to them. However, the network representation, e.g., adjacency matrix, is usually high-dimensional and sparse, which is not suitable for the main steam but tuple-based machine learning and data mining models, such as support vector machines (SVMs) and artificial neural networks. Moreover, many networks usually have heterogeneous information, i.e., multiple types of entities and interactions. In this thesis, we thus study heterogeneous information fusion in network embedding, which is to learn low-dimensional and dense node representations from multiple heterogeneous network information for data mining applications.en_US
dcterms.extentxx, 166 pages : illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2018en_US
dcterms.educationalLevelPh.D.en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.LCSHData miningen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
991022168755803411.pdfFor All Users13.63 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/9702