Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.contributor.advisorPun, Lilian (LSGI)-
dc.creatorYang, Zi-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/10037-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleAn enhanced three-frame-differencing approach for vehicle detection under challenging environmental conditionsen_US
dcterms.abstractRobust and efficient vehicle detection, counting and tracking is an important task in Intelligent Transportation Systems. With the continuous development of computer vision technologies, remarkable progress has been made in vision-based vehicle detection. Comparing to other sensors, vision cameras provide rich information for driving understanding. At the same time, robust feature descriptors and efficient background models have been proposed for the purpose of accurate vehicle detection. In this thesis, a computationally efficient method for vehicle detection, counting and tracking under different environmental conditions is presented, with a special focus on adverse illumination and weather. The general framework is based on enhanced Three-Frame-Differencing (E-TFD). In a given video sequence, three consecutive frames are utilized to generate frame differencing images. With an efficient thresholding and removal of small noise regions, moving vehicles can be extracted in an efficient and accurate manner. Meanwhile, based on extracted regions of interest (ROIs), exact numbers of vehicles can be counted and displayed on the screen. The E-TFD method can detect and count vehicle candidates in both fine and inclement weather conditions, including sunny, rainy, foggy, snowy, blizzard, wet snow and nighttime conditions in this study. To evaluate the E-TFD detection approach, nine videos are collected from different sources. Six videos are selected from two public datasets, CDnet 2014 and KIT dataset, for the purpose of performance analysis. At the same time, three videos are recorded from different roads in Kowloon, Hong Kong using a digital camera. Of all 4532 tested frames, 10059 vehicles can be successfully detected out of 11556 vehicles, showing an average detection rate of 87.1%. The E-FTD method shows a significant improvement of detection rate in adverse conditions and can provide a efficient solution of all-time, all-weather detection, counting and tracking that can in future be embedded into a real-time traffic surveillance system.en_US
dcterms.extentxi, 134 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2019en_US
dcterms.educationalLevelPh.D.en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.LCSHVehicle detectorsen_US
dcterms.LCSHImage processing -- Digital techniquesen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
991022244148403411.pdfFor All Users3.91 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/10037