Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributor.advisorMak, Chee Leung (AP)-
dc.contributor.advisorLeung, Chi Wah (AP)-
dc.creatorChan, Ka Ho-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/10166-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleCharacterization of 2D heterostructuresen_US
dcterms.abstractUp to now, A great effort has been used to study the field of two dimensional (2D) materials. Reduced crystal symmetry existing in 2D materials when they are scaled down from bulk to monolayer leads to the change of their band structures. Graphene was the most widely 2D material in last decade because of its distinctive physical properties. A lot of devices based on graphene have been reported. However, the absence of a bandgap for graphene has limited its applications in electronics and optoelectronics. Taking advantages of reduced crystal symmetry, transition metal dichalcogenides (TMDs) have various advantages such as high electron mobilities, high ON/OFF ratio current ratio and excellent bendability, which are suitable for next generation low-power consumption and flexible electronic devices. Laterally, TMDs have strong covalent bonds which provide a great in-plane stability. Vertically, the van der Waals force allow TMDs to stack on other materials to form a 2D hybrid van der Waals (vdW) heterostructures without the need for considering the lattice mismatch of the two different materials. As a result, it opens the opportunities for developing novel device applications in the future. Recently, p-n junctions based on organic and two-dimensional (2D) materials have been recognized as the easiest way to fabricate hybrid 2D van der Waals heterojunction devices for electronic and optoelectronic applications. General speaking, organic materials on 2D materials is usually fabricated by thermal evaporation with the presence of high voltage and vacuum systems. In this thesis, we introduce a simple way to fabricate p-organic/n-2D heterostructure, where Pedot:PSS was chosen to be the p-organic material due to its high conductivity, excellent film forming ability and good stability, while MoS2 and WS2 were chosen as the n-2D material due to their well-known properties. We demonstrate that simple technique introduced in our fabrication of organic/2D van der Waals heterojunction could extend to include other organics and 2D materials.en_US
dcterms.extentxx, 93 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2019en_US
dcterms.educationalLevelM.Phil.en_US
dcterms.educationalLevelAll Masteren_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.LCSHGrapheneen_US
dcterms.LCSHHeterostructuresen_US
dcterms.LCSHSemiconductorsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
991022287151303411.pdfFor All Users2.64 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/10166