Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.contributor.advisorSze, Nung-sing (AMA)en_US
dc.creatorZheng, Run-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/11516-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic Universityen_US
dc.rightsAll rights reserveden_US
dc.titleLinear maps preserving certain unitarily invariant norms of tensor products of matricesen_US
dcterms.abstractLinear preserver problem is an active and popular research topic in matrix theory and functional analysis. The main goal of linear preserver problems is to characterise the structure of linear maps on matrix spaces or operator spaces that preserve certain functions, subsets or relations. Let Mn denote the n x n complex matrix space. The first linear preserver problem proposed by Frobenius in 1896 was to characterise linear maps Φ : Mn → Mn such that det(Φ(A)) = det(A) for all A ϵ Mn· In recent years, partly due to the development of quantum science, much attention has been paid to the study of linear maps leaving invariant tensor products or certain propositions of tensor products. Fosner et al. characterised linear preservers for Schatten p-norms and Ky Fan k- norms of tensor products of square matrices. In this thesis, we generalize their results by characterising the form of linear maps preserving the γ-norms or the (p, k)-norms with 2 < p < ∞ of tensor products of square matrices. Let m ≥ 2 and n1,..., nm be integers larger than or equal to 2. Suppose that ǁ·ǁ is the γ-norm or the (p, k)-norm with 2 < p < ∞. We show in this thesis that a linear map Φ : Mn1...nm → Mn1...nm satisfies ǁΦ(A1 x ··· x Am)ǁ = ǁA1 x ··· x Amǁ for all Ai ϵ Mni,i = 1,...,m, if and only if there exist unitary matrices U, V ϵ Mn1...nm such that Φ(A1 x...x Am) = U(φ1(A) x...x φm(A))V for all Ai ϵ Mni,i = 1,...,m, where φi is the identity map or the transposition map A → AT for i = 1,...,m. We develop some new techniques to show that Φ(Eii x Ejj) and Φ(Err x Ess) are orthogonal for any distinct (i, j) ≠ (r, s), which is a key step in our proof. Suppose that γ = (γ1,...,γn) with γ1 ≥ ... ≥ γk >0 = γk+1 = ··· = γn· Our characterization of linear preservers for γ-norms mainly relies on the observation that if ǁE + Fǁγ = ǁEǁγ + ǁFǁγ, then UEV = E1 + E2 and UFV = F1 + F2 for some unitary matrices U and V with E1, F1 ϵ Mk and E2, F2 ϵ Mn-k· Some equalities have been applied to obtain our results on (p, k)-norms.en_US
dcterms.extentix, 65 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2022en_US
dcterms.educationalLevelM.Phil.en_US
dcterms.educationalLevelAll Masteren_US
dcterms.LCSHAlgebras, Linearen_US
dcterms.LCSHMatricesen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
5963.pdfFor All Users544.47 kBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/11516