Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Aeronautical and Aviation Engineeringen_US
dc.contributor.advisorHsu, Li-ta (AAE)en_US
dc.contributor.advisorYu, Simon (AAE)en_US
dc.creatorZhang, Guohao-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/11796-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic Universityen_US
dc.rightsAll rights reserveden_US
dc.titleIntelligent 3D mapping aided GNSS based collaborative positioning in urban areasen_US
dcterms.abstractLocalization is essential for almost every civil application, mainly relying on the global navigation satellite system (GNSS). Consumer-grade GNSS receivers experience different types of interference and noise, resulting in unsatisfactory positioning accuracy. Owing to the development of communication technologies, the concept of collaborative positioning can be applied to GNSS to effectively reduce positioning errors. However, this algorithm is ineffective for urban areas where most applications are located, owing to the severe degradation from multipath and non-line-of-sight (NLOS) reception errors.en_US
dcterms.abstractThis study develops a novel 3D mapping-aided (3DMA) GNSS collaborative positioning algorithm effective in urban areas. It complementarily integrates the 3DMA GNSS algorithm and the double difference (DD) based estimation to eliminate common errors and mitigate distinctive errors simultaneously, thereby providing better relative position information to optimize the urban GNSS solutions.en_US
dcterms.abstractIn this thesis, the proposed 3DMA GNSS collaborative positioning algorithm is developed and analyzed comprehensively. The performance and limitations of conventional collaborative positioning algorithms in urban areas were first evaluated. Then, a preliminary 3DMA GNSS collaborative positioning algorithm with multipath and NLOS exclusion was developed. Next, an improved 3DMA GNSS collaborative positioning algorithm, utilizing NLOS receptions as features to aid positioning, was developed to be effective in dense urban areas. Subsequently, the practical issues of the proposed algorithm were analyzed through realistic simulations, including the scalability performance and latency degradation. Finally, two collaborator selection strategies for improving the algorithm effectiveness are investigated based on the environmental context and occurrence of spatial correlation.en_US
dcterms.abstractExtensive simulations and experiments were conducted to validate the performance of the proposed algorithm, which outperformed the conventional positioning methods with approximately twice the accuracy. Therefore, the proposed 3DMA GNSS collaborative positioning algorithm is capable of providing accurate and robust positioning solutions for agents in dense urban areas.en_US
dcterms.extentiv, 151 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2022en_US
dcterms.educationalLevelPh.D.en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.LCSHGlobal Positioning Systemen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
6248.pdfFor All Users6.48 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/11796