Full metadata record
DC FieldValueLanguage
dc.contributorSchool of Designen_US
dc.creatorChan, Kwai-hung-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/1251-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleA computational kernel for supporting generative and evolutionary designen_US
dcterms.abstractEvolutionary Computation techniques have been used in design systems for exploring and generating design solutions in recent years. However, most of the current evolutionary design studies concentrate on analysis and optimisation of design solutions for problems at the stage of detailed design. There has been comparatively less research on the synthesis and generation of design solutions through a dynamic process of evolution and refinement, at conceptual stage of design process. Furthermore, many conventional studies on evolutionary design do not support multiple representations of design objects at different levels of abstraction, which are essential for exploring design solutions in an incremental and evolutionary manner. To overcome the above problems, a computational kernel is developed in this thesis for the development of design supporting system applications, based on a Generative and Evolutionary Design (GED) model. With this kernel, design objects can be dynamically evolved in a specialisation process in which design solutions are developed from abstract levels to detailed levels. Generative mechanisms are integrated with this multiple representation scheme to manipulate and generate new design solutions from basis and abstract design objects in an interactive manner which involves users in making design selections. This study focuses on the three important aspects of this kernel, 1) modelling design object and design process in a generative and evolutionary manner within an integrated computational platform; 2) adapting and capturing the knowledge of how design objects are generated within this platform; and 3) enhancing the exploration ability of generative and evolutionary design applications with the use of a number of different evolutionary and generative computing techniques, including Genetic Algorithms and Cellular Automata. Three examples of applying the GED kernel to design tasks are tested and evaluated. The results show that it is feasible and applicable to use the kernel as the core architecture of computational design systems for supporting generative and evolutionary design applications, with improved generative, explorative and adaptive ability in producing potential design solutions effectively and efficiently.en_US
dcterms.extentxii, 180 p. : ill. ; 31 cm.en_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2008en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.educationalLevelPh.D.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertations.en_US
dcterms.LCSHEvolutionary computation.en_US
dcterms.LCSHDesign -- Data processing.en_US
dcterms.LCSHComputer-aided design.en_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b22338093.pdfFor All Users4.43 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/1251