Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorFung, Hon-kwok-
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleModel risks in the valuation of equity indexed annuitiesen_US
dcterms.abstractOver last several decades, a lot of work has been done to incorporate various features of asset price movements into stochastic models, including (but not limited to) stochastic volatility of stock price, randomness of interest rate and the correlation between stock return and return volatility (i.e. the leverage effect). This thesis presents an empirical study in the pricing errors for equity indexed annuities (EIAs) arising from the use of different interest rate models and volatility models. For the interest rate risk, I will inspect the pricing differences between the use of the stochastic volatility model of Heston (1993) and the use a combination of the Heston model with the stochastic interest rate model of Cox, Ingersoll and Ross (1985). The classical Black-Scholes (1973) model will also be compared against its combination with the extended Vasicek model due to Hull and White (1990). Unlike most equity options in the literature, EIAs typically have moderate to long maturities. While in the valuing the former one may consider the interest rate as deterministic, this may not be the case for pricing EIAs. This part of the thesis is a partial attempt to answer this question. For volatility risks, although the number of existing volatility models is vast, most of them are impractical for EIA valuation. This is because the EIAs are Bermudan options (owing to the presence of surrender terms) but most popular volatility models simply do not admit closed form or semi-closed form formulas for the densities or characteristic functions of the stock return conditional on the initial and final volatilities. To solve this problem, I adopt the finite-state, continuous-time regime switching Levy stock return model proposed by Chourdakis (2004). This model also has the merit that the leverage effect can be built in easily. However, the model was initially intended to be used as an approximation to Heston's (1993) model. As such, it is not risk-neutral. In addition, for general time-changed Levy processes, that how to find an equivalent martingale measure is currently a very confusing-issue in the literature. In this thesis I modify Chourdakis' model so that it is used directly as the model of, but not an approximation to, a physical process. A way to obtain a structure-preserving equivalent martingale measure is also proposed. Given the conditional density or characteristic function for a regime switching model, one can compute Bermudan option prices by using the sequential quadrature method developed by Sullivan (2000a,b). We will explain the idea of this method and give a convergence proof to it in this thesis.en_US
dcterms.extentvi, 164 p. : ill. ; 30 cm.en_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertations.en_US
dcterms.LCSHEquity indexed annuities.en_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b21900176.pdfFor All Users16.17 MBAdobe PDFView/Open

Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/2115