Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Electronic and Information Engineeringen_US
dc.creatorGao, Jie-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/37-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleFabrication and characterization of gallium nitride based heterojunctions etched by photoelectrochemical wet etchingen_US
dcterms.abstractThe photoelectrochemical (PEC) wet etching technique was used to etch semi-insulating-GaN epitaxial layers grown by plasma-assisted MBE on sapphire substrates. Systematic studies were conducted to optimize the etching parameters such as the light intensity and concentration of the solution. It is found that the optimal concentration of the etching solution consisted of 0.1M KOH: 0.05M K2S2O8 in proportion of 1:1. The film was etched under the illumination of the He-Cd laser at the light intensity of 1.68W/cm2. This gives etching rate of about 22nm/min and the root-mean squared (RMS) roughness of the etched surface is 17.38nm. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) measurement results indicate that the etched surface is comparable with the as-grown GaN films, and can be further improved by the ultrasonic treatment in hot KOH solution. To investigate the effects of PEC wet etching on the electronic properties of the films, we fabricated cross-bridge Al0.13Ga0.87N | GaN heterostructures under the different etching conditions and ultrasonic treatments. The devices were analyzed by the characterization of cross-bridge structures. Results show that the room temperature Hall mobilities and the low-frequency excess noise levels of the devices vary systematically with the light intensity and the concentration of the solution. These results are consistent with the changes of surface roughness. It is found that when the devices were treated by ultrasonic agitation after etching process, the corresponding noise level decreased. A Lorentzian bump originating from the generation-recombination process is observed at low temperature range and its thermal activation energy is about 86.2meV. In addition, it is observed that the low-frequency excess noise of the devices fabricated by optimal PEC etching condition is about half of an order of magnitude lower than that of the devices fabricated by inductively coupled plasma (ICP) dry etching technique. The room temperature Hooge parameter of the device fabricated under the optimal conditions is found to be 2 x 10-3 compared to a value of 9 x 10-3 for the device fabricated by conventional ICP etching technique. The experimental results demonstrate that PEC wet etching can be effectively utilized as an alternative technique for the fabrication of GaN devices.en_US
dcterms.extentix, 99 leaves : ill. ; 30 cm.en_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2006en_US
dcterms.educationalLevelAll Masteren_US
dcterms.educationalLevelM.Phil.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertations.en_US
dcterms.LCSHGallium nitride -- Electric properties.en_US
dcterms.LCSHPhotoelectrochemistry.en_US
dcterms.LCSHEtching.en_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b20592632.pdfFor All Users3.49 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/37