Author: Luk, Ming-hay
Title: Decision support queries on graph data : answering which-pair queries
Degree: M.Phil.
Year: 2011
Subject: Decision support systems.
Querying (Computer science).
Graph theory -- Data processing.
Hong Kong Polytechnic University -- Dissertations
Department: Department of Computing
Pages: xx, 101 p. : ill. ; 30 cm.
Language: English
Abstract: Decision support systems are computer aided tools that support the decision making process of an organization. By analyzing enormous volumes of data, decision support systems will provide insightful information to its users. The success of a decision support system relies heavily on both the accuracy of the information that it can provide and the time it requires to provide the information. Conventionally, decision support systems operate using numeric data. The prevalence of graph data has prompted decision support research to begin researching techniques for supporting graph data. Thus far, only graph summarizing and graph pattern mining has been addressed. However, these techniques do not allow for changes in the underlying graph data. When the underlying data is represented by graphs, what types of decision support queries will users ask? This work presents "which" queries, a class of decision support queries that are specific to graph data, and illustrate their potential applications. When an organization makes a decision resulting in a change to the underlying graph data, new edges may eventually be added to the organization's graph data model. The addition of a new edge to the graph will affect how the objects, modeled in the graph, relate to each other. Determining how the object relationships change is a crucial factor that the organization needs to consider. However, determining object relationships is an expensive operation. Furthermore, the solution space that an organization is considering can be considerably large when using graph data; thus, efficient algorithms to evaluate the fundamental "which" queries are also presented. This work will develop a decision support system that effectively and efficiently answers the fundamental "which" queries. First, a model for "which" queries will be developed. Then, algorithms for efficiently answering fundamental "which" queries will be presented, which have been experimentally shown to be orders of magnitude faster than basic solutions. The results of the experiments on five real graph data sets will be presented. Finally, discussion of how the proposed algorithms can be used to answer other types of "which" queries will be presented.
Rights: All rights reserved
Access: open access

Files in This Item:
File Description SizeFormat 
b24562166.pdfFor All Users1.58 MBAdobe PDFView/Open

Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show full item record

Please use this identifier to cite or link to this item: