Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorChan, Siu-hung Joshua-
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleA decomposition approach for computing elementary flux modes in genome-scale metabolic networksen_US
dcterms.abstractThe appearance of high-throughput experimental techniques to measure biological data in recent decades gives birth to Systems Biology which studies the emergent properties of biological systems by mathematical modelling. The most ubiquitous structure in biological systems is the network structure. Among different biological networks, a particular important one is the metabolic network consisting of all the biochemical reactions and compounds in a cell. Reconstructed from the whole genome of a cell, the so-called genome-scale metabolic network successfully describes the cellular metabolism. A fundamental computational framework applied to metabolic networks is the flux balance analysis (FBA) derived from the steady-state assumption. In FBA, the metabolic flux distribution, which is the vector containing all reaction rates in a metabolic network, can be obtained from solving a simple linear program given the stoichiometric information of reactions and a biological objective for optimization. Metabolic pathway analysis (MPA) is a computational technique relevant to FBA to analyze metabolic pathways in metabolic networks. The first mathematically defined metabolic pathway, elementary flux mode (EFM), has theoretical as well as practical importance. One significant role of EFMs is that every flux distribution can be decomposed into a set of EFMs and a number of methods to study flux distributions originate from it. Yet finding such decompositions requires the complete set of EFMs, which is intractable in genome-scale metabolic networks due to combinatorial explosion. In this research, we propose an algorithm to decompose flux distributions into EFMs in genome-scale networks. It is an iterative scheme of a mixed integer linear program. The algorithm is also able to approximate the EFM of largest contribution to an objective reaction in a flux distribution.en_US
dcterms.abstractComplimentary to existing methods, our algorithm is capable of finding EFMs of flux distributions with complex structures, closer to the realistic case in which a cell is subject to various constraints. Our algorithm is first applied to study the growth of Escherichia coli (E. coli) under simple growth condition and we find that the employment of different EFMs is highly dynamic and sensitive to growth condition in order to achieve an optimal state of metabolism. This suggests a possible reason for the enormous redundancy of EFMs consuming the same set of uptake substrates and producing the same set of metabolites. A case of growth of E. coli in the Lysogeny broth (LB) medium in which the situation is complicated by the presence of various carbon sources is simulated and studied via our algorithm. Essential metabolites and their syntheses are located. Information on the contribution of each carbon source not obvious from the apparent flux distribution is also revealed. Finally, we apply our algorithm to analyze a real experimental flux distribution in mouse cardiomyocyte. Results consistent with literature are obtained. Interestingly, a mode of oxidative phosphorylation uncoupled from adenosine triphosphate (ATP) synthesis is discovered and this is not obvious from the flux distribution. In conclusion, the algorithm can facilitate MPA in genome-scale metabolic networks. It provides an analytic method that prepares for the future breakthrough in experimental techniques to measure in vivo fluxes in a huge scale. One of the future directions is the improvement, refinement and further applications of the algorithm. Another possibility is the development of a more general algorithm to decompose a flux distribution into a set of EFMs with respect to a given optimization objective in a genome-scale metabolic network. Also, in the future, by further case studies and evaluations of different schemes for decomposition, a well-structured methodology may be established to analyze flux distributions in different situations as thorough as possible by their decompositions into EFMs.en_US
dcterms.extentxii, 111 p. : ill. (some col.) ; 30 cm.en_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.educationalLevelAll Masteren_US
dcterms.LCSHMetabolism -- Mathematical models.en_US
dcterms.LCSHComputational biology.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b24625383.pdfFor All Users3.24 MBAdobe PDFView/Open

Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/6293