Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.contributor.advisorLiu, Chunling Catherine (AMA)-
dc.creatorYang, Jin-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/9331-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleHypothesis testing for two-sample functional/longitudinal dataen_US
dcterms.abstractDuring recent two decades, functional data commonly arise from many scientific fields such as transportation flow, climatology, neurological science and human mortality among others. The corresponding data recorded may be in the form of curves, shapes, images and functions that may be correlated, multivariate, or both. The intrinsic infinite dimensionality of functional data poses challenges in the development of theory, methodology and computation for functional data analysis. Tests of significance are essential statistical problems and are challenging for functional data due to the demands coming from real world applications. Motivated by requirements in real-world data analysis, we have focused on two topics of study. 1) Multivariate functional data have received considerable attention. It is natural to validate whether two mean surfaces are homogeneous but existing work is few. 2) In existing literature, most testing methods were designed for validity of dense and regular functional data samples, whereas in practice, functional samples may be sparse and irregular or even partly dense. In such functional data setting, there is rare work for testing equality of covariance functions or mean curves. To address these problems, we aim to two targets: 1) We propose novel sequential and parallel projection testing procedures that can detect the difference in mean surfaces powerfully. Furthermore, we apply the idea to present testing statistics for test of equality of mean curves for two functional data samples irrespective of the data type. Furthermore, the other related work takes auxiliary information into consideration. We propose a new functional regression model to characterize the conditional mean of functional response given covariates. 2) We derive a novel test procedure for test of equality of covariance functions that can deal with any functional data type, even irregular or sparse data. In addition, by using the stringing technique, once a high-dimensional data can map into functional data, we excogitate a testing procedure for comparison of covariance matrices under the high-dimensional data setting. Our method outperforms the existing testing methods in high-dimensional data testing procedures. Almost all work mentioned above include asymptotic theory and rigorous theorem proof, intensive numerical experiments and real-world data analysis.en_US
dcterms.extentxi, 155 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2018en_US
dcterms.educationalLevelPh.D.en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.LCSHFunctional analysisen_US
dcterms.LCSHMultivariate analysisen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
991022090659603411.pdfFor All Users2.18 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/9331